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Abstract

Section 21.4 of Transport Phenomena (BSL2 after its three authors: Bird, Stewart, and Lightfoot; second ed.; full reference given in [1])
addresses the problem of mass transfer enhancement by a homogeneous and irreversible first-order chemical reaction in turbulent tube flow.
The authors discuss several solution approaches of historical interest, and provide a complete transport model for solute A based on the laws
of conservation of mass and momentum, from which the local Sherwood number, Sk, can be obtained as a function of the dimensionless axial
distance into the mass transfer zone and the Damkdhler number, Da. The latter accounts for the effect of reaction kinetics on solute transport.
However, BSL2 is very sketchy in the solution details of their model, and does not validate the key results relative to other studies. Thus, the
usefulness of the authors’ modelling approach cannot be properly assessed. In this work, a fully documented numerical solution of the original
transport problem is given, along with comprehensive results such as velocity and concentration profiles, as well as Sk values outside the range of
axial positions given in BSL2. Mass transfer enhancement factors (ratio of Sh with chemical reaction/Sh without reaction) are also calculated and
compared with the literature. Our results show that accurate estimates of enhancement factors in turbulent tube flow with chemical reaction can
be obtained using the straightforward BSL2 modelling approach, which may be readily adapted to examine other situations relevant to chemical
engineering.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This communication provides full documentation and com-
prehensive results, extends the range of applicability of the
solution, and places in perspective the turbulent mass transfer
problem with chemical reaction presented in §21.4 of the classic
Transport Phenomena text [1], hereinafter referred to as BSL2.
In this section, Bird et al. discuss the academically challenging
and industrially relevant topic of mass transfer enhancement by
a chemical reaction in turbulent tube flow. One of the prob-
lems analyzed is that of a steadily driven turbulent flow in
which the wall material (solid species A) is only slightly sol-
uble in the tube fluid (liquid species B). Upon dissolution at the
wall, mass transfer of A in the tube fluid by axial convection
and radial diffusion ensues, accompanied by a homogeneous
and irreversible first-order chemical reaction (A — products).
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Assumptions include isothermal operation, constant fluid phys-
ical properties, and a fully developed turbulent velocity profile.
Simplified versions of this problem have been tackled by sev-
eral authors (see pertinent references in [1], pp. 659 and 661),
with all of them predicting mass transfer enhancement from
the wall as a result of the chemical reaction in the tube
fluid.

Avoiding the shortcomings of earlier studies, BSL2 presents
Eq. (21.4-12) which is the steady, time-smoothed mass conserva-
tion equation for solute A in liquid B, given below in its original

form:
0 DaC
at] “

LIC 1) dvt
(21.4-12)

drt

1 2
R % o B l+
9zt rtort [r (Sc +0)

In this equation, the dimensionless molar concentration of A,
C(r*, z¥), appears as a function of the dimensionless radial (+*)
and axial (z*) distances, with the Schmidt (Sc) and Damkohler
(Da) numbers as either known or user-specified parameters. Sc
relates the rate of momentum transfer to that of solute dif-
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Nomenclature

Notation

C dimensionless molar concentration of solute
A in the tube fluid = €A /cao

CA time-smoothed molar concentration of solute A
in the tube fluid

CAO molar concentration of solute A on the fluid side
of the tube wall interface

Da Damkéhler number = k’l”v/vi =0, 0.001, or 0.01;
dimensionless

Dagp binary diffusion coefficient of solute A in liquid
B

f Fanning friction factor for turbulent tube flow
given by the Blasius equation (BSL2 Eq. (6.2-12);
valid for 2100 < Re < 100000)=0.0791/Re!* =
0.00791 for Re=10000; dimensionless

Ky rate constant for a homogeneous and irreversible
first-order chemical reaction (A — products)

ke mass transfer coefficient defined by BSL2 Eq.
(21.4-2)

/ mixing length for turbulent tube flow given by
BSL2 Eq. (5.4-7)

r dimensionless mixing length for turbulent tube
flow =lv, /v

r radial distance measured from the tube centerline

rt dimensionless radial distance measured from the
tube centerline =rv, /v

R tube radius

R* dimensionless distance of the tube center-
line measured from the wall = Rv,/v=
R )(f12)V/? /v = (Re/2)(f/2)!/? = 314.44 for
Re=10000 and f=0.00791

Re Reynolds number for fully developed turbulent
tube flow =2R(v;) /v =10000; dimensionless

Sc Schmidt number = v/ Dap =200; dimensionless

Sh local Sherwood number given by the dimen-
sionless form of BSL2 Eq. (21.4-2) = 2[511‘]; =

%; dimensionless

v, time-smoothed z-component (axial) of the veloc-
ity for fully developed turbulent tube flow

vt dimensionless  time-smoothed  z-component
(axial) of the velocity for fully developed
turbulent tube flow =, /v,

Vs friction velocity = (v.)(f/2)!/?> obtained from
BSL2 Egq. (6.1-4a)

(v;) time-smoothed z-component (axial) of the veloc-
ity for fully developed turbulent tube flow
averaged over the tube cross section

by transformed dimensionless axial distance into

the mass transfer zone measured from the tube
inlet=1logo(z* + 1); note that x(0) =0 which is a
convenient starting point for the numerical solu-
tion of the problem

y distance into the fluid measured from the tube
wall=R —r

yt dimensionless distance into the fluid measured
from the tube wall = yv, /u=R* — r*

z axial distance into the mass transfer zone mea-
sured from the tube inlet

zt dimensionless axial distance into the mass trans-

fer zone measured from the tube inlet=zv, /v

Greek letters

¢ mass transfer enhancement factor =asymptotic
value of S with chemical reaction to that without
reaction; dimensionless

v kinematic viscosity of the tube fluid (dilute solu-
tion of all chemical species in liquid B)

fusion, while Da includes the effect of reaction kinetics. To
solve BSL2 Eq. (21.4-12) for C(r*, z"), the velocity profile
for fully developed turbulent tube flow is needed. This appears
explicitly as v in the convective term on the left side (which
allows for the axial development of the concentration profile)
and in the radial derivative |dv™/dr™| on the right side. The
equation also includes the van Driest model for the mixing
length, I*, as modified by Hanna et al. after fitting heat and
mass transfer data from drag reduction experiments [2]. The
dimensionless axial velocity profile v™ may be obtained by
integrating the time-smoothed equation of motion for steadily
driven tube flow which also includes I* (BSL2 Egs. (21.4-13) and
(21.4-14)):

+1\ 2 + +
) dv dv A
") (dy+> tar =k (21.4-13)
1 — exp(—y* /26
I+ = 0.4y* exp(—)"/26) (21.4-14)

[1 — exp(—0.26y+)] /2

In these equations, R* is the dimensionless distance of the
tube centerline measured from the wall, and y* =R* — r* is the
dimensionless distance into the fluid measured from the tube
wall. Standard velocity boundary conditions include no-slip at
the wall and symmetry at the tube centerline, while the dimen-
sionless molar concentration of A is taken as C=0 at the tube
inlet, C=1 on the fluid side of the wall interface, and sym-
metric at the tube centerline. The problem was solved by a
former student of Prof. Warren E. Stewart several years ago
(Michael Caracotsios, presently Adjunct Professor of Chemi-
cal Engineering, Illinois Institute of Technology, Chicago, IL),
but the results were never published. The only record of the
numerical solution of the three equations presented above is
BSL2 Fig. 21.4-1 ([1], p. 662; reproduced here), in which
the local Sherwood number, Sh, calculated from the dimen-
sionless form of BSL2 Eq. (21.4-2), is given as a function of
z* for a turbulent Reynolds number, Re, of 10000, Sc=200,
and Da=0, 0.001, and 0.01. Their results show decreasing
values of Sh into the mass transfer zone, with considerable
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BSL2 Fig. 21.4-1. Local Sherwood number, Sk, given in BSL2 ([1], p. 662)
for fully developed turbulent tube flow with Re = 10000, Sc =200, and Da =0,
0.001, and 0.01.

enhancements at large z* due to the presence of the homoge-
neous and irreversible chemical reaction (cases where Da > 0).
Given Prof. Stewart’s passing in 2006, the sketchy details of
the solution procedure, and the limited results presented in
BSL2, it is likely that the chemical engineering relevance and
impact of this important mass transfer problem will not be fully
appreciated.

In this communication the author provides: (1) a fully doc-
umented procedure for the numerical solution of BSL2 Egs.
(21.4-12)—(21.4-14) given the original values of Re= 10000,
Sc=200, and Da=0, 0.001, and 0.01; (2) the dimensionless
axial velocity profile vt for steadily driven turbulent flow in
a smooth, 3 cm inner diameter tube (identical to that used in
the BSL2 calculations); (3) the dimensionless molar concen-
tration of solute A, C, at various radial and axial positions
into the mass transfer zone; (4) Sh values at z* positions well
outside the range of that shown in BSL2 Fig. 21.4-1 using a
single numerical simulation, so that the limiting behavior of
Sh for several Da may be better appreciated; and (5) a com-
parison of the mass transfer enhancement factors (ratio of the
asymptotic Sk with chemical reaction to that without reaction)
predicted by BSL2 Eqs. (21.4-12)—(21.4-14) and by other rele-
vant studies in the literature. The results obtained in this study
constitute a comprehensive supplement to those given in BSL2,
and should be of interest to researchers in the fields of tur-
bulent mass transfer, chemical reaction kinetics, and reactor
design.

2. Mathematical formulation and solution strategy

Even though BSL2 Eq. (21.4-12) is formulated in terms
of r* and z* as independent variables, this author solved
for the dimensionless molar concentration C in terms of
yt and x, with y*=R*—r" and x being a transformed
dimensionless axial distance into the mass transfer zone,
x=logyo(z" +1). The dimensionless mass conservation equa-
tion for species A in terms of y* and x is given below,
where use has been made of the chain rule to transform
the left side concentration derivative in BSL2 Eq. (21.4-12)

20

18

164

dimensionless axial velocity, v+

50 100 150 200 250 300
dimensionless distance from the wall, y+

Fig. 1. Dimensionless time-smoothed axial velocity, v (y*), for fully developed
turbulent tube flow with Re =10000 and f=0.00791. Values from the numerical
solution of BSL2 Egs. (21.4-13) and (21.4-14) and those from the 20-degree
polynomial fit are indistinguishable. The maximum dimensionless distance is
yr=R"=314.44.

[for ease of computation, Eq. (1) was multiplied through by
(RT—=y")I:

107\ ac 1 9 1
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The (y*, x) coordinates allowed the numerical algorithm to start
at the fluid side of the tube wall interface (y* =0), which has a
constant molar concentration of A, and to traverse a compressed
axial length scale with x(0)=0 and a reasonable number of
increments to attain large values of z*. As a first step, the dimen-
sionless axial velocity profile, v (y*), was obtained from y* =0
to y* =R* =314.44 (see calculation under “Nomenclature”) by
numerically integrating BSL2 Eqs. (21.4-13) and (21.4-14) with
v+(0)=0 (no-slip at the wall) and dv™/dy*(RT) = 0 (symme-
try at the tube centerline) using a standard Maple® solver for
boundary-value problems with mesh adaptation, a maximum
absolute error of 107°, and 30 digits preserved before truncation
in all calculations (Waterloo, Ontario, Canada). Twenty one
(y*, v") data pairs, evenly-spaced across the radius of the tube,
were obtained from the calculated axial velocity profile and
least-square-fitted with a 20-degree polynomial, yielding a
continuous and differentiable function v*(y*)in 0 <y* <R" [to
be subsequently inserted in Eq. (1)]. Fig. 1 shows the numerical
solution and the fitted values, which are indistinguishable.
Note that the largest variation in the time-smoothed axial
velocity occurs near the wall, the expected behavior for fully
developed turbulent tube flow. The fitted velocity profile and
its first y*-derivative were then fed to a Maple® centered-
based, finite-difference algorithm which solved Eq. (1) for
C(y*, x) throughout a rectangular grid of 2000 increments in y*
(0 <y* <R*) and 200 increments in x (0 < x < 8). The number
of both increments was increased progressively from arbitrary
baseline values to the stated levels to ascertain the stability of
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Fig. 2. Dimensionless molar concentration of solute A, C(y*, x), for Da=0 (no
reaction) at y* =0 (fluid side of the wall interface), y* = R*/2000 (first increment
in y*), and y* =R* (tube centerline) for fully developed turbulent flow. These
profiles were obtained from the numerical solution of Eq. (1) and BSL2 Eqgs.
(21.4-13) and (21.4-14), along with the boundary conditions indicated in the
text. The ordinate scale was chosen for clarity. R* =314.44.

the solution, with 30 digits preserved before truncation in all
calculations. The boundary conditions in the (y*, x) coordinates
were C(y*, 0)=0 at the inlet of the mass transfer zone,
C(0, x)=1 on the fluid side of the wall interface (assumes
instantaneous equilibration of the fluid with the solid A at the
wall without partitioning), and 9C/dy ™ (R™, x) = 0 (symmetry)
at the tube centerline. The solution and associated plots
depicting C(y*, x) for each value of Da took an average of 3h
to generate on a desktop personal computer (Gateway E Series,
Intel® Pentium® 4 CPU, 2.67 GHz, 512 Mb RAM, Irvine, CA).

3. Comprehensive mass transfer results and discussion

Fig. 2 shows a typical C(y*, x) plot for the case Da=0 (no
reaction). The three curves are for the following representative
dimensionless distances: y* =0 (fluid side of the wall interface),
yt=R*/2000 (first increment in y*), and y* =R* (tube center-
line). The calculated curve for y* =0 shows a concentration
overshoot very close to the tube inlet (z*=x=0), a common
occurrence in the numerical solution of partial differential equa-
tions with discontinuous boundary conditions [3]. In this case,
the boundary condition in z* represents a step increase in concen-
tration across the plane z* =0 at the tube wall, which affects the
solution of Eq. (1) in the vicinity of (0, 0). The usual strategies for
dealing with such overshoots are to concentrate grid points near
the discontinuity (leading to variable increments) or to increase
the total number of grid points keeping the increments uniform.
The second approach was tried in the present study, resulting
in a sharper overshoot very close to the tube inlet (data not
shown). However, the maximum, unrealistic concentration of C
~1.12 was unaffected by such changes. The y* = R*/2000 curve
in Fig. 2 shows a steep increase in concentration near the tube
inlet, followed by a flat profile for x > 4. Finally, the y* = R* curve
shows similar behavior to the y* = R*/2000 curve, but the non-
zero concentration levels are extremely low [C(R", 8) ~10_13]

dimensionless concentration, C(y+, x)

0 5 10 15 20 25 30 35 40 45 50
dimensionless distance from the wall, y+

Fig. 3. Dimensionless molar concentration of solute A, C(y*, x), for Da=0 (no
reaction) at cross-sectional planes x=2, 4, and 8 for fully developed turbulent
tube flow. These profiles were obtained from the numerical solution of Eq. (1)
and BSL2 Egs. (21.4-13) and (21.4-14), along with the boundary conditions
indicated in the text. Both scales were chosen for clarity.

to be visible with the ordinate scale chosen. For the cases where
Da >0, all curves were found to be qualitatively similar to those
in Fig. 2 (including the overshoot in the y* =0 curve), but the
concentration levels of the y* = R*/2000 and y* = R* curves were
lower due to the presence of the chemical reaction in the tube
fluid. The three curves shown in this figure should give the reader
good insight on the functionality of the local Sherwood number
with z+ and Da, as these concentrations enter directly in the Sh
calculation to be discussed below.

Fig. 3 shows C(y*, x) for Da=0 (no reaction) and 0 < y* <50
at three cross-sectional planes located at x=2, 4, and 8. The
largest changes in the fluid’s solute concentration occur close to
wall up to x ~4. For the cases where Da > 0, the curves fall off
from C=1 at y* =0 in qualitatively similar fashion, but attain
smaller values far from the wall than those in Fig. 3 due to the
presence of the chemical reaction in the tube fluid.

Fig. 4 shows the local Sherwood number, Sk, as a function
of the dimensionless axial distance into the mass transfer zone
[plotted as Sk versus logio(z*) for convenience] for Da=0,
0.001, and 0.01. The concentration derivative needed in the
Sh calculation (equation given under “Nomenclature”) was
obtained from the concentration at the first increment in y*
minus that at y* = 0 divided by the y*-distance between the points
(R*/2000). This figure extends the z* scale in BSL2 Fig. 21.4-1
by four orders of magnitude to the right [4 <logio(z*) < 8] and
three to the left [—1 <logjo(z*) < 2] using a single numerical
simulation. Although Sh remains unchanged for log;o(z*) >4,
the use of the full range [—1 <logjo(z*) < 8] demonstrates the
stability of the solution, which may be advantageous when con-
sidering other physical situations or parameter settings. This
positive feature of the solution is directly related to the use in this
study of the transformed dimensionless axial distance x instead
of z*. Fig. 4 is qualitatively similar to BSL2 Fig. 21.4-1, but sig-
nificant quantitative differences exist between the two, including
the axial position where the curves merge and the asymptotic
value of Sh for Da=0.01 (~900 in BSL2 Fig. 21.4-1 versus
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Fig. 4. Local Sherwood number, Sh, as a function of z* for Da=0, 0.001, and
0.01. Sh is plotted versus logjo(z*) to allow easy comparison of the results
with BSL2 Fig. 21.4-1. The solid lines are smoothed representations of the
Sh values calculated at specific z* locations (shown by symbols). This plot
extends the range of z* in BSL2 Fig. 21.4-1 by four orders of magnitude to the
right [4 <logjo(z*) < 8] and three to the left [—1 <logjo(z*) < 2] using a single
numerical simulation. This shows the stability of the solution over the entire
range [—1 <logjo(z*) < 8] and the usefulness of the x versus z* coordinate in
the calculations.

822 in this study). Since details of the solution or additional
data other than those presented in BSL2 ([1], p. 662) were never
published, further quantitative comparison between the two fig-
ures is entirely speculative. Lending support to our calculations,
Fig. 4 is also qualitatively similar to Fig. 11 for the local mass
transfer coefficient in the Mitrovic and Papavassiliou study [4]
to be discussed later.

Fig. 4 shows that, near the tube inlet, Sk is independent of
Da since the rate of mass transfer of A from the wall into the
fluid dominates the rate of reaction. Farther downstream, mass
transfer from the wall slows down and the magnitude of Da
has a marked effect on the asymptotic value of Sk, with signifi-
cant enhancements observed in the Da > 0 cases (those involving
chemical reaction) over the Da =0 case (no reaction). One inter-
esting finding was that the dimensionless axial distance needed
for Sh to reach 95% of its asymptotic value (calculated at x=38)
decreased with increasing Da as follows: z+ ~5.0R* for Da =0,
zt ~1.8R* for Da=0.001, and z* ~0.25R* for Da=0.01.

Since mass transfer enhancement factors ¢, defined as the
ratio of the asymptotic Sk with chemical reaction to that without
reaction, can have a considerable impact on industrial reactor
design (to give an obvious example), Table 1 compares ¢ from
several studies addressing the same turbulent mass transfer prob-
lem for values of Re, Sc, and Da identical to those used in this
work. The ¢ values from Hanna et al. [5] are higher than those of
our study by as much as 17%, but this is not surprising since their
model neglects the axial solute convection term altogether (left
side of BSL2 Eq. (21.4-12)). With this omission, the authors fail
to account for the increase in the fluid’s solute concentration with
z* (clearly shown in Figs. 2 and 3), leading to erroneous values of
Sh. On the other hand, the ¢ values of Mitrovic and Papavassiliou
[4] differ by ~1% from those of our study. This is an interesting
agreement because their numerical solution to the problem is
based on an entirely different approach to ours. In their case,

Table 1
Mass transfer enhancement factors ¢ in turbulent tube flow predicted by several
studies for Re = 10000, Sc =200, and Da as indicated®

Da Asymptotic Sh 1]
from this work® .
Eq. (10) [5] Eq. (22b) [4] This work
0 305.5¢ - - -
0.001 395.5 1.382 1.285 1.295
0.01 821.6 3.179 2.657 2.690

2 All numerical results are rounded to four significant figures.

b This is the local value calculated at the upper limit of the transformed
dimensionless axial position, x=8.

¢ For the curious reader, correlation Q of Perry et al. ([6], p. 5-63) gives an
average Sh=281.0 with Re =10000 and Sc =200 for fully developed turbulent
tube flow. This correlation was obtained by Linton and Sherwood using exper-
imental wetted-wall column and dissolution data (no reaction), and is valid for
2100 < Re <35000 and 0.6 < Sc < 3000 [7]. Similarly, correlation Y ([6], p. 5-64)
gives an asymptotic Sh=288.5 for Re=10000 and Sc=200. This semiempiri-
cal correlation is based on a heat transfer analogy (fully developed turbulent
tube flow with step increase in wall temperature and Da=0) by Notter and
Sleicher, and is valid for 2100 <Re < 100000 and Sc¢> 100 [8]. Thus, there is
reasonable agreement between the experimental Sh values of reference [6] and
the theoretical value for Da =0 from this study.

spectral methods were used to calculate the fully developed
turbulent velocity profile from the corresponding equation of
motion (direct numerical simulation without experimental cor-
relations), followed by the statistical tracking of a continuous
line of mass markers released from a flat channel wall. Although
the data for comparison of Mitrovic and Papavassiliou [4] and
ours are limited, itis certainly encouraging that the results appear
to be model-insensitive as far as the key reactor design param-
eter ¢ is concerned. Improved turbulent flow models and more
accurate experimental data on velocity and concentration pro-
files (with and without chemical reaction) should provide better
estimates of mass transfer enhancement factors in the future. As
a final thought, the straightforward BSL2 modelling approach
to this problem may also be used to examine the following sce-
narios of wide interest to chemical engineers in academia and
industry: spatially variable boundary conditions, solute parti-
tioning at y* =0, complex reaction kinetics, different turbulent
flow models, and geometries other than cylindrical.
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