
A

a
T
o
d
H
u
t
a
c
b
e
©

K

1

p
s
p
T
I
a
a
l
w
u
w
a
a

1
d

Chemical Engineering Journal 138 (2008) 628–633

Short communication

Mass transfer enhancement by chemical reaction
in turbulent tube flow

Carlos A. Ramı́rez ∗
Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00681-9046
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bstract

Section 21.4 of Transport Phenomena (BSL2 after its three authors: Bird, Stewart, and Lightfoot; second ed.; full reference given in [1])
ddresses the problem of mass transfer enhancement by a homogeneous and irreversible first-order chemical reaction in turbulent tube flow.
he authors discuss several solution approaches of historical interest, and provide a complete transport model for solute A based on the laws
f conservation of mass and momentum, from which the local Sherwood number, Sh, can be obtained as a function of the dimensionless axial
istance into the mass transfer zone and the Damköhler number, Da. The latter accounts for the effect of reaction kinetics on solute transport.
owever, BSL2 is very sketchy in the solution details of their model, and does not validate the key results relative to other studies. Thus, the
sefulness of the authors’ modelling approach cannot be properly assessed. In this work, a fully documented numerical solution of the original
ransport problem is given, along with comprehensive results such as velocity and concentration profiles, as well as Sh values outside the range of
xial positions given in BSL2. Mass transfer enhancement factors (ratio of Sh with chemical reaction/Sh without reaction) are also calculated and

ompared with the literature. Our results show that accurate estimates of enhancement factors in turbulent tube flow with chemical reaction can
e obtained using the straightforward BSL2 modelling approach, which may be readily adapted to examine other situations relevant to chemical
ngineering.

2007 Elsevier B.V. All rights reserved.
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. Introduction

This communication provides full documentation and com-
rehensive results, extends the range of applicability of the
olution, and places in perspective the turbulent mass transfer
roblem with chemical reaction presented in §21.4 of the classic
ransport Phenomena text [1], hereinafter referred to as BSL2.
n this section, Bird et al. discuss the academically challenging
nd industrially relevant topic of mass transfer enhancement by
chemical reaction in turbulent tube flow. One of the prob-

ems analyzed is that of a steadily driven turbulent flow in
hich the wall material (solid species A) is only slightly sol-
ble in the tube fluid (liquid species B). Upon dissolution at the

all, mass transfer of A in the tube fluid by axial convection

nd radial diffusion ensues, accompanied by a homogeneous
nd irreversible first-order chemical reaction (A → products).
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ssumptions include isothermal operation, constant fluid phys-
cal properties, and a fully developed turbulent velocity profile.
implified versions of this problem have been tackled by sev-
ral authors (see pertinent references in [1], pp. 659 and 661),
ith all of them predicting mass transfer enhancement from

he wall as a result of the chemical reaction in the tube
uid.

Avoiding the shortcomings of earlier studies, BSL2 presents
q. (21.4-12) which is the steady, time-smoothed mass conserva-

ion equation for solute A in liquid B, given below in its original
orm:

+ ∂C

∂z+ = 1

r+
∂

∂r+

[
r+

(
1

Sc
+ (l+)

2
∣∣∣∣dv+

dr+

∣∣∣∣
)

∂C

∂r+

]
− Da C

(21.4-12)

n this equation, the dimensionless molar concentration of A,

(r+, z+), appears as a function of the dimensionless radial (r+)
nd axial (z+) distances, with the Schmidt (Sc) and Damköhler
Da) numbers as either known or user-specified parameters. Sc
elates the rate of momentum transfer to that of solute dif-
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Nomenclature

Notation
C dimensionless molar concentration of solute

A in the tube fluid = c̄A/cA0
c̄A time-smoothed molar concentration of solute A

in the tube fluid
cA0 molar concentration of solute A on the fluid side

of the tube wall interface
Da Damköhler number = k′′′

1 υ/v2∗ = 0, 0.001, or 0.01;
dimensionless

DAB binary diffusion coefficient of solute A in liquid
B

f Fanning friction factor for turbulent tube flow
given by the Blasius equation (BSL2 Eq. (6.2-12);
valid for 2100 < Re < 100000) = 0.0791/Re1/4 =
0.00791 for Re = 10000; dimensionless

k′′′
1 rate constant for a homogeneous and irreversible

first-order chemical reaction (A → products)
kc mass transfer coefficient defined by BSL2 Eq.

(21.4-2)
l mixing length for turbulent tube flow given by

BSL2 Eq. (5.4-7)
l+ dimensionless mixing length for turbulent tube

flow = lv∗/υ
r radial distance measured from the tube centerline
r+ dimensionless radial distance measured from the

tube centerline = rv∗/υ
R tube radius
R+ dimensionless distance of the tube center-

line measured from the wall = Rv∗/υ =
R〈v̄z〉(f/2)1/2/υ = (Re/2)(f/2)1/2 = 314.44 for
Re = 10000 and f = 0.00791

Re Reynolds number for fully developed turbulent
tube flow = 2R〈v̄z〉/υ = 10000; dimensionless

Sc Schmidt number = υ/DAB = 200; dimensionless
Sh local Sherwood number given by the dimen-

sionless form of BSL2 Eq. (21.4-2) = 2Rkc
DAB

=
−2R+∂C/∂y+(0,x)

1−C(R+,x) ; dimensionless
v̄z time-smoothed z-component (axial) of the veloc-

ity for fully developed turbulent tube flow
v+ dimensionless time-smoothed z-component

(axial) of the velocity for fully developed
turbulent tube flow = v̄z/v∗

v∗ friction velocity = 〈v̄z〉(f/2)1/2 obtained from
BSL2 Eq. (6.1-4a)

〈v̄z〉 time-smoothed z-component (axial) of the veloc-
ity for fully developed turbulent tube flow
averaged over the tube cross section

x transformed dimensionless axial distance into
the mass transfer zone measured from the tube
inlet = log10(z+ + 1); note that x(0) = 0 which is a
convenient starting point for the numerical solu-
tion of the problem

y distance into the fluid measured from the tube
wall = R − r

y+ dimensionless distance into the fluid measured
from the tube wall = yv∗/υ = R+ − r+

z axial distance into the mass transfer zone mea-
sured from the tube inlet

z+ dimensionless axial distance into the mass trans-
fer zone measured from the tube inlet = zv∗/υ

Greek letters
φ mass transfer enhancement factor = asymptotic

value of Sh with chemical reaction to that without
reaction; dimensionless

υ kinematic viscosity of the tube fluid (dilute solu-
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tion of all chemical species in liquid B)

usion, while Da includes the effect of reaction kinetics. To
olve BSL2 Eq. (21.4-12) for C(r+, z+), the velocity profile
or fully developed turbulent tube flow is needed. This appears
xplicitly as v+ in the convective term on the left side (which
llows for the axial development of the concentration profile)
nd in the radial derivative |dv+/dr+| on the right side. The
quation also includes the van Driest model for the mixing
ength, l+, as modified by Hanna et al. after fitting heat and
ass transfer data from drag reduction experiments [2]. The

imensionless axial velocity profile v+ may be obtained by
ntegrating the time-smoothed equation of motion for steadily
riven tube flow which also includes l+ (BSL2 Eqs. (21.4-13) and
21.4-14)):

l+)
2
(

dv+

dy+

)2

+ dv+

dy+ = 1 − y+

R+ (21.4-13)

+ = 0.4y+ 1 − exp(−y+/26)

[1 − exp(−0.26y+)] 1/2 (21.4-14)

n these equations, R+ is the dimensionless distance of the
ube centerline measured from the wall, and y+ = R+ − r+ is the
imensionless distance into the fluid measured from the tube
all. Standard velocity boundary conditions include no-slip at

he wall and symmetry at the tube centerline, while the dimen-
ionless molar concentration of A is taken as C = 0 at the tube
nlet, C = 1 on the fluid side of the wall interface, and sym-

etric at the tube centerline. The problem was solved by a
ormer student of Prof. Warren E. Stewart several years ago
Michael Caracotsios, presently Adjunct Professor of Chemi-
al Engineering, Illinois Institute of Technology, Chicago, IL),
ut the results were never published. The only record of the
umerical solution of the three equations presented above is
SL2 Fig. 21.4-1 ([1], p. 662; reproduced here), in which

he local Sherwood number, Sh, calculated from the dimen-

ionless form of BSL2 Eq. (21.4-2), is given as a function of
+ for a turbulent Reynolds number, Re, of 10000, Sc = 200,
nd Da = 0, 0.001, and 0.01. Their results show decreasing
alues of Sh into the mass transfer zone, with considerable
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BSL2 Fig. 21.4-1. Local Sherwood number, Sh, given in BSL2 ([1], p. 662)
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Fig. 1. Dimensionless time-smoothed axial velocity, v+(y+), for fully developed
turbulent tube flow with Re = 10000 and f = 0.00791. Values from the numerical
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or fully developed turbulent tube flow with Re = 10000, Sc = 200, and Da = 0,
.001, and 0.01.

nhancements at large z+ due to the presence of the homoge-
eous and irreversible chemical reaction (cases where Da > 0).
iven Prof. Stewart’s passing in 2006, the sketchy details of

he solution procedure, and the limited results presented in
SL2, it is likely that the chemical engineering relevance and

mpact of this important mass transfer problem will not be fully
ppreciated.

In this communication the author provides: (1) a fully doc-
mented procedure for the numerical solution of BSL2 Eqs.
21.4-12)–(21.4-14) given the original values of Re = 10000,
c = 200, and Da = 0, 0.001, and 0.01; (2) the dimensionless
xial velocity profile v+ for steadily driven turbulent flow in
smooth, 3 cm inner diameter tube (identical to that used in

he BSL2 calculations); (3) the dimensionless molar concen-
ration of solute A, C, at various radial and axial positions
nto the mass transfer zone; (4) Sh values at z+ positions well
utside the range of that shown in BSL2 Fig. 21.4-1 using a
ingle numerical simulation, so that the limiting behavior of
h for several Da may be better appreciated; and (5) a com-
arison of the mass transfer enhancement factors (ratio of the
symptotic Sh with chemical reaction to that without reaction)
redicted by BSL2 Eqs. (21.4-12)–(21.4-14) and by other rele-
ant studies in the literature. The results obtained in this study
onstitute a comprehensive supplement to those given in BSL2,
nd should be of interest to researchers in the fields of tur-
ulent mass transfer, chemical reaction kinetics, and reactor
esign.

. Mathematical formulation and solution strategy

Even though BSL2 Eq. (21.4-12) is formulated in terms
f r+ and z+ as independent variables, this author solved
or the dimensionless molar concentration C in terms of
+ and x, with y+ = R+ − r+ and x being a transformed
imensionless axial distance into the mass transfer zone,

+
= log10(z + 1). The dimensionless mass conservation equa-
ion for species A in terms of y+ and x is given below,
here use has been made of the chain rule to transform

he left side concentration derivative in BSL2 Eq. (21.4-12)

C
(
o
b

olution of BSL2 Eqs. (21.4-13) and (21.4-14) and those from the 20-degree
olynomial fit are indistinguishable. The maximum dimensionless distance is
+ = R+ = 314.44.

for ease of computation, Eq. (1) was multiplied through by
R+ − y+)]:

+
(

10−x

ln 10

)
∂C

∂x
=

(
1

R+ − y+

)
∂

∂y+

[
(R+ − y+)

(
1

Sc

+ (l+)
2
∣∣∣∣dv+

dy+

∣∣∣∣
)

∂C

∂y+

]
− Da C (1)

he (y+, x) coordinates allowed the numerical algorithm to start
t the fluid side of the tube wall interface (y+ = 0), which has a
onstant molar concentration of A, and to traverse a compressed
xial length scale with x(0) = 0 and a reasonable number of
ncrements to attain large values of z+. As a first step, the dimen-
ionless axial velocity profile, v+(y+), was obtained from y+ = 0
o y+ = R+ = 314.44 (see calculation under “Nomenclature”) by
umerically integrating BSL2 Eqs. (21.4-13) and (21.4-14) with
+(0) = 0 (no-slip at the wall) and dv+/dy+(R+) = 0 (symme-
ry at the tube centerline) using a standard Maple® solver for
oundary-value problems with mesh adaptation, a maximum
bsolute error of 10−6, and 30 digits preserved before truncation
n all calculations (Waterloo, Ontario, Canada). Twenty one
y+, v+) data pairs, evenly-spaced across the radius of the tube,
ere obtained from the calculated axial velocity profile and

east-square-fitted with a 20-degree polynomial, yielding a
ontinuous and differentiable function v+(y+) in 0 ≤ y+ ≤ R+ [to
e subsequently inserted in Eq. (1)]. Fig. 1 shows the numerical
olution and the fitted values, which are indistinguishable.
ote that the largest variation in the time-smoothed axial
elocity occurs near the wall, the expected behavior for fully
eveloped turbulent tube flow. The fitted velocity profile and
ts first y+-derivative were then fed to a Maple® centered-
ased, finite-difference algorithm which solved Eq. (1) for

(y , x) throughout a rectangular grid of 2000 increments in y

0 ≤ y+ ≤ R+) and 200 increments in x (0 ≤ x ≤ 8). The number
f both increments was increased progressively from arbitrary
aseline values to the stated levels to ascertain the stability of
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Fig. 2. Dimensionless molar concentration of solute A, C(y+, x), for Da = 0 (no
reaction) at y+ = 0 (fluid side of the wall interface), y+ = R+/2000 (first increment
in y+), and y+ = R+ (tube centerline) for fully developed turbulent flow. These
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Fig. 3. Dimensionless molar concentration of solute A, C(y+, x), for Da = 0 (no
reaction) at cross-sectional planes x = 2, 4, and 8 for fully developed turbulent
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rofiles were obtained from the numerical solution of Eq. (1) and BSL2 Eqs.
21.4-13) and (21.4-14), along with the boundary conditions indicated in the
ext. The ordinate scale was chosen for clarity. R+ = 314.44.

he solution, with 30 digits preserved before truncation in all
alculations. The boundary conditions in the (y+, x) coordinates
ere C(y+, 0) = 0 at the inlet of the mass transfer zone,
(0, x) = 1 on the fluid side of the wall interface (assumes

nstantaneous equilibration of the fluid with the solid A at the
all without partitioning), and ∂C/∂y+(R+, x) = 0 (symmetry)

t the tube centerline. The solution and associated plots
epicting C(y+, x) for each value of Da took an average of 3 h
o generate on a desktop personal computer (Gateway E Series,
ntel® Pentium® 4 CPU, 2.67 GHz, 512 Mb RAM, Irvine, CA).

. Comprehensive mass transfer results and discussion

Fig. 2 shows a typical C(y+, x) plot for the case Da = 0 (no
eaction). The three curves are for the following representative
imensionless distances: y+ = 0 (fluid side of the wall interface),
+ = R+/2000 (first increment in y+), and y+ = R+ (tube center-
ine). The calculated curve for y+ = 0 shows a concentration
vershoot very close to the tube inlet (z+ = x = 0), a common
ccurrence in the numerical solution of partial differential equa-
ions with discontinuous boundary conditions [3]. In this case,
he boundary condition in z+ represents a step increase in concen-
ration across the plane z+ = 0 at the tube wall, which affects the
olution of Eq. (1) in the vicinity of (0, 0). The usual strategies for
ealing with such overshoots are to concentrate grid points near
he discontinuity (leading to variable increments) or to increase
he total number of grid points keeping the increments uniform.
he second approach was tried in the present study, resulting

n a sharper overshoot very close to the tube inlet (data not
hown). However, the maximum, unrealistic concentration of C
1.12 was unaffected by such changes. The y+ = R+/2000 curve
n Fig. 2 shows a steep increase in concentration near the tube
nlet, followed by a flat profile for x > 4. Finally, the y+ = R+ curve
hows similar behavior to the y+ = R+/2000 curve, but the non-
ero concentration levels are extremely low [C(R+, 8) ∼10−13]

o
n
t
v

ube flow. These profiles were obtained from the numerical solution of Eq. (1)
nd BSL2 Eqs. (21.4-13) and (21.4-14), along with the boundary conditions
ndicated in the text. Both scales were chosen for clarity.

o be visible with the ordinate scale chosen. For the cases where
a > 0, all curves were found to be qualitatively similar to those

n Fig. 2 (including the overshoot in the y+ = 0 curve), but the
oncentration levels of the y+ = R+/2000 and y+ = R+ curves were
ower due to the presence of the chemical reaction in the tube
uid. The three curves shown in this figure should give the reader
ood insight on the functionality of the local Sherwood number
ith z+ and Da, as these concentrations enter directly in the Sh

alculation to be discussed below.
Fig. 3 shows C(y+, x) for Da = 0 (no reaction) and 0 ≤ y+ ≤ 50

t three cross-sectional planes located at x = 2, 4, and 8. The
argest changes in the fluid’s solute concentration occur close to
all up to x ∼4. For the cases where Da > 0, the curves fall off

rom C = 1 at y+ = 0 in qualitatively similar fashion, but attain
maller values far from the wall than those in Fig. 3 due to the
resence of the chemical reaction in the tube fluid.

Fig. 4 shows the local Sherwood number, Sh, as a function
f the dimensionless axial distance into the mass transfer zone
plotted as Sh versus log10(z+) for convenience] for Da = 0,
.001, and 0.01. The concentration derivative needed in the
h calculation (equation given under “Nomenclature”) was
btained from the concentration at the first increment in y+

inus that at y+ = 0 divided by the y+-distance between the points
R+/2000). This figure extends the z+ scale in BSL2 Fig. 21.4-1
y four orders of magnitude to the right [4 ≤ log10(z+) ≤ 8] and
hree to the left [−1 ≤ log10(z+) ≤ 2] using a single numerical
imulation. Although Sh remains unchanged for log10(z+) > 4,
he use of the full range [−1 ≤ log10(z+) ≤ 8] demonstrates the
tability of the solution, which may be advantageous when con-
idering other physical situations or parameter settings. This
ositive feature of the solution is directly related to the use in this
tudy of the transformed dimensionless axial distance x instead

f z+. Fig. 4 is qualitatively similar to BSL2 Fig. 21.4-1, but sig-
ificant quantitative differences exist between the two, including
he axial position where the curves merge and the asymptotic
alue of Sh for Da = 0.01 (∼900 in BSL2 Fig. 21.4-1 versus
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Fig. 4. Local Sherwood number, Sh, as a function of z+ for Da = 0, 0.001, and
0.01. Sh is plotted versus log10(z+) to allow easy comparison of the results
with BSL2 Fig. 21.4-1. The solid lines are smoothed representations of the
Sh values calculated at specific z+ locations (shown by symbols). This plot
extends the range of z+ in BSL2 Fig. 21.4-1 by four orders of magnitude to the
r + +

n
r
t

8
d
p
u
F
t
t

D
fl
t
h
c
c
e
f
d
z

r
r
d
s
l
w
o
m
s
t
z
S
[
a
b

Table 1
Mass transfer enhancement factors φ in turbulent tube flow predicted by several
studies for Re = 10000, Sc = 200, and Da as indicateda

Da Asymptotic Sh
from this workb

φ

Eq. (10) [5] Eq. (22b) [4] This work

0 305.5c – – –
0.001 395.5 1.382 1.285 1.295
0.01 821.6 3.179 2.657 2.690

a All numerical results are rounded to four significant figures.
b This is the local value calculated at the upper limit of the transformed

dimensionless axial position, x = 8.
c For the curious reader, correlation Q of Perry et al. ([6], p. 5–63) gives an

average Sh = 281.0 with Re = 10000 and Sc = 200 for fully developed turbulent
tube flow. This correlation was obtained by Linton and Sherwood using exper-
imental wetted-wall column and dissolution data (no reaction), and is valid for
2100 < Re < 35000 and 0.6 < Sc < 3000 [7]. Similarly, correlation Y ([6], p. 5–64)
gives an asymptotic Sh = 288.5 for Re = 10000 and Sc = 200. This semiempiri-
cal correlation is based on a heat transfer analogy (fully developed turbulent
tube flow with step increase in wall temperature and Da = 0) by Notter and
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[

ight [4 ≤ log10(z ) ≤ 8] and three to the left [−1 ≤ log10(z ) ≤ 2] using a single
umerical simulation. This shows the stability of the solution over the entire
ange [−1 ≤ log10(z+) ≤ 8] and the usefulness of the x versus z+ coordinate in
he calculations.

22 in this study). Since details of the solution or additional
ata other than those presented in BSL2 ([1], p. 662) were never
ublished, further quantitative comparison between the two fig-
res is entirely speculative. Lending support to our calculations,
ig. 4 is also qualitatively similar to Fig. 11 for the local mass

ransfer coefficient in the Mitrovic and Papavassiliou study [4]
o be discussed later.

Fig. 4 shows that, near the tube inlet, Sh is independent of
a since the rate of mass transfer of A from the wall into the
uid dominates the rate of reaction. Farther downstream, mass

ransfer from the wall slows down and the magnitude of Da
as a marked effect on the asymptotic value of Sh, with signifi-
ant enhancements observed in the Da > 0 cases (those involving
hemical reaction) over the Da = 0 case (no reaction). One inter-
sting finding was that the dimensionless axial distance needed
or Sh to reach 95% of its asymptotic value (calculated at x = 8)
ecreased with increasing Da as follows: z+ ∼5.0R+ for Da = 0,
+ ∼1.8R+ for Da = 0.001, and z+ ∼0.25R+ for Da = 0.01.

Since mass transfer enhancement factors φ, defined as the
atio of the asymptotic Sh with chemical reaction to that without
eaction, can have a considerable impact on industrial reactor
esign (to give an obvious example), Table 1 compares φ from
everal studies addressing the same turbulent mass transfer prob-
em for values of Re, Sc, and Da identical to those used in this
ork. The φ values from Hanna et al. [5] are higher than those of
ur study by as much as 17%, but this is not surprising since their
odel neglects the axial solute convection term altogether (left

ide of BSL2 Eq. (21.4-12)). With this omission, the authors fail
o account for the increase in the fluid’s solute concentration with
+ (clearly shown in Figs. 2 and 3), leading to erroneous values of

h. On the other hand, the φ values of Mitrovic and Papavassiliou
4] differ by ∼1% from those of our study. This is an interesting
greement because their numerical solution to the problem is
ased on an entirely different approach to ours. In their case,

[

[

leicher, and is valid for 2100 < Re < 100000 and Sc > 100 [8]. Thus, there is
easonable agreement between the experimental Sh values of reference [6] and
he theoretical value for Da = 0 from this study.

pectral methods were used to calculate the fully developed
urbulent velocity profile from the corresponding equation of

otion (direct numerical simulation without experimental cor-
elations), followed by the statistical tracking of a continuous
ine of mass markers released from a flat channel wall. Although
he data for comparison of Mitrovic and Papavassiliou [4] and
urs are limited, it is certainly encouraging that the results appear
o be model-insensitive as far as the key reactor design param-
ter φ is concerned. Improved turbulent flow models and more
ccurate experimental data on velocity and concentration pro-
les (with and without chemical reaction) should provide better
stimates of mass transfer enhancement factors in the future. As
final thought, the straightforward BSL2 modelling approach

o this problem may also be used to examine the following sce-
arios of wide interest to chemical engineers in academia and
ndustry: spatially variable boundary conditions, solute parti-
ioning at y+ = 0, complex reaction kinetics, different turbulent
ow models, and geometries other than cylindrical.

cknowledgement

The author thanks the BSL2 triumvirate of authors, with
hom he has had many pleasant scholarly interactions over the

ast few years in the fields of transport phenomena and the history
f science.

eferences

1] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed.
(revised), John Wiley & Sons, Inc., New York City, NY, 2007, pp. 659–663.

2] O.T. Hanna, O.C. Sandall, P.R. Mazet, Heat and mass transfer in turbulent

flow under conditions of drag reduction, AIChE J. 27 (1981) 693–697.

3] A. Jeffrey, Advanced Engineering Mathematics, Harcourt/Academic Press,
Burlington, MA, 2002, pp. 540, 563, 564, 587, and 1012–1014.

4] B.M. Mitrovic, D.V. Papavassiliou, Effects of a first-order chemical reaction
on turbulent mass transfer, Int. J. Heat Mass Transfer 47 (2004) 43–61.



eerin

[

[

[7] W.H. Linton Jr., T.K. Sherwood, Mass transfer from solid shapes to
C.A. Ramı́rez / Chemical Engin

5] O.T. Hanna, O.C. Sandall, C.L. Wilson, Mass transfer accompanied by first-

order chemical reaction for turbulent duct flow, Ind. Eng. Chem. Res. 26
(1987) 2286–2290.

6] R.H. Perry, D.W. Green, J.O. Maloney, Perry’s Chemical Engineers’ Hand-
book, seventh ed., The McGraw-Hill Companies, Inc., New York City, NY,
1997, pp. 5-63–5-64.

[

g Journal 138 (2008) 628–633 633
water in streamline and turbulent flow, Chem. Eng. Progr. 46 (1950)
258–264.

8] R.H. Notter, C.A. Sleicher, The eddy diffusivity in the turbulent boundary
layer near a wall, Chem. Eng. Sci. 26 (1971) 161–171.


	Mass transfer enhancement by chemical reaction in turbulent tube flow
	Introduction
	Mathematical formulation and solution strategy
	Comprehensive mass transfer results and discussion
	Acknowledgement
	References


